TRECVID-2008 Content-based Copy Detection task Overview

Wessel Kraaij
TNO // Radboud University

George Awad, Paul Over NIST

Outline

- □ Task overview
- Dataset and queries
- Transformations
- Evaluation metrics
- Participants
- Results
- Global Observations
- Issues

Task design considerations

- Copy detection is applied in several real-word tasks:
 - television advertisement monitoring
 - detection of copyright infringement
 - detection of known (illegal) content
- 2008: pilot task with synthetic queries
- Audio handled in a separate condition
- Task has both a detection and localization component
- Detection measure based on error rates
- Weighted trade-off of type I (false alarms) and type II (misses) errors.
- Computation of optimal operating point by NIST, next time by participants?

CBCD task overview

- □ Goal:
 - Build a benchmark collection for video copy detection methods
- Task:
 - Given a set of reference (test) video collection and a set of 2000 queries,
 - determine for each query if it contains a copy, with possible transformations, of video from the reference collection,
 - and if so, from where in the reference collection the copy comes
- □ Three main task types were derived:
 - Copy detection of <u>video-only</u> queries (<u>required</u>)
 - Copy detection of <u>audio-only</u> queries (optional)
 - Copy detection of <u>video + audio</u> queries (optional)

Datasets and queries

- Dataset:
 - Reference video collection: TV2007 and TV2008 sound & vision data (~200 hr)
 - Non-reference video collection: TV2007 BBC rushes data
- Query types: (Developed by INRIA-IMEDIA)

Copies

- Type 1: composed of a reference video only. (1/3)
- Type 2: composed of a reference video embedded in a non-reference video. (1/3)
- Type 3: composed of a non-reference video only. (1/3)
- Number of queries:
 - 201 total original queries were created by NIST using tools created by INRIA-IMEDIA
 - 67 gueries for each type
- After creating the queries, each was transformed.
 - 10 video transformations by Laurent Joyeaux (independent agent at INRIA)
 - 7 audio transformations by Dan Ellis (Columbia University)
- □ Yielding...
 - 10 * 201 = 2010 video queries
 - 7 * 201 = 1407 audio queries
 - 10 * 7 * 201 = 14070 audio+video queries

Video transformations

- □ Cam Cording (T1)
- Picture in picture (T2)
- Insertions of pattern (T3)
- Strong re-encoding (T4)
- □ Change of gamma (T5)
- Decrease in quality (T6, T7) by introducing a combination of Blur,
 Gamma, Frame dropping, Contrast, Compression, Ratio, White noise
 - For T6, 3 transformations are randomly selected and combined
 - For T7, 5 transformations are randomly selected and combined
- □ Post production (T8, T9) by introducing a combination of *Crop, Shift, Contrast, Text insertion, Vertical mirroring, Insertion of pattern, Picture in picture,*
 - For T8, 3 transformations are randomly selected and combined
 - For T9, 5 transformations are randomly selected and combined
- Combination of 5 randomly selected transformations chosen from T1-9 (T10)

Video transformations examples

Some actual query clips

Audio transformations

- T1: nothing
 T2: mp3 compression
 T3: mp3 compression and multiband companding
 T4: bandwidth limit and single-band companding
 T5: mix with speech
- T6: mix with speech, then multiband compress
- T7: bandpass filter, mix with speech, compress

Some important task details/assumptions

- Detection systems use a form of thresholding
- Systems are asked to output a list of possible copies (in fact disabling thresholding)
- A query can yield just one true positive
- A query can give rise to many false alarms
- Consequence:
 - Type I error modeled as false alarm rate
 - Type II error modeled as Pmiss

Evaluation metrics

- Three main metrics were adopted:
 - Normalized Detection Cost Rate (NDCR)
 - measures error rates/probabilities on the test set:
 - Pmiss (probability of a missed copy)
 - Rfa (false alarm rate)
 - combines them using assumptions about one possible realistic scenario:
 - Copy target rate (Rtarget) = 0.5/hr
 - Cost of a miss (CMiss) = 10
 - Cost of a false alarm (CFA) = 1
 - F_1 (how accurately the copy is located, harmonic mean of P and R)
 - 3. Mean processing time per query
- General rules:
 - No two query result items for a given video can overlap.
 - For multiple result items per query, one mapping of submitted extents to ref extents is determined based on F1-score.
- □ The reference data has been found if and only if:
 - The asserted test video ID is correct AND asserted copy and ref. video overlap.

<u>Decision Score Histogram Separated wrt. Reference Annotation s</u>

<u>Decision Score Histogram Separated wrt. Reference Annotation s</u>

signal: query

Compute Rate_{FA} and P_{Miss} for all Θ

 $NDCR = Pmiss + \beta Rfa$ β defined by task characteristics

Optimal threshold determined by NIST

22 Participants (finishers)

Bilkent University	CD FE **
University of Bradford	CD ** RU
Beijing Jiaotong University	CD ** ** **
Brno University of Technology	CD ED FE ** SE
Beijing University of Posts and Telecommunications	CD ** FE
Columbia University	CD FE SE
Computer Research Institute of Montreal	CD
COST292 Team (Delft Univ.)	CD ** FE RU SE
Fudan University	CD ED FE SE
IBM T. J. Watson Research Center	CD ** FE ** SE
INRIA-LEAR	CD FE
INRIA-IMEDIA	CD ** **
Istanbul Technical University	CD
Chinese Academy of Sciences (MCG-ICT-CAS)	CD ED FE SE
National Institute of Informatics	CD ** FE RU SE
Orange Labs - France Telecom Group	CD
PicSom(Helsinki University of Technology)	CD FE RU SE
Tsinghua University - Intel China Research Center	CD ** FE RU SE
TNO-ICT	CD **
University of Glasgow	CD ** RU SE
VIREO (City University of Hong Kong)	CD ** FE RU SE
vision@ucf (University of Central Florida)	CD ED ** **
** : group didn't submit any runs	: group didn't participate

Submission types

Run type	Count
V (video only)	48
A (audio only)	1
M (video + audio)	6*
Total runs	55

^{*) 1} of these is audio only

Approaches

- Typical outline
 - Keyframe extraction
 - Feature extraction
 - Indexing
 - Matching
- Frame representations
 - SIFT descriptors
 - Block based features
 - Global (edge histogram)
 - Differ in efficiency / effectiveness trade-off
- Several teams created a validation/development set
- Different modules for different transformation types vs. generic approaches
- Application of video similarity component developed for rushes summarization
- Combination of audio and video: apply AND, confidence score normalization (training data necessary).

Example det curve1: Determining the optimal NDCR

Example det curve2: Cut-off too early?

T1: Cam Cording

T3: Insertion of patterns

T5: Change of gamma

T8, T9: Post Production

T2: Pict. In Pict.

T4: Re-encoding

T6, T7: Decrease in quality

Top 10 sites per transformation (Min. NDCR)

Site Name	T1	T2	Т3	T4	T5	Т6	T7	Т8	Т9	T10
INRIA-LEAR.v.Strict	1	1	2	1	2	1	1	2	1	1
INRIA-LEAR.v.Soft	2	2	1	2	3	2	2	1	2	2
INRIA-IMEDIA.v.fusion	4	4	3	3	1	3	6	6	7	4
INRIA-LEAR.v.KeysAdves	3	7	8	7	-	5	3	7	6	3
INRIA-IMEDIA.v.joly	9	-	4	4	7	4	5	ı	-	5
OrangeLabsICM.v.Run2	10	6	6	-	9	-	-	4	5	7
OrangeLabsICM.v.Run1	-	5	5	-	4	-	-	3	3	6
OrangeLabsICM.v.Run3	-	3	7	-	5	-	-	5	4	8
MCG-ICT-CAS.v.ICTCBCDREL	-	9	-	9	-	7	7	9	-	10
INRIA-IMEDIA.v.ViCopT	6	-	9	-	10	-	-	8	8	-
MCG-ICT-CAS.v.ICTCBCDALL	-	8	-	-	-	-	10	10	10	-
CRIMontreal.v.Run1	5	-	-	-	-	8	4	-	-	-
thu-intel.v.2	-	-	-	5	8	9	-	-	-	-
thu-intel.v.3	-	-	-	6	6	10	-	-	-	-
BeijingUPT.v.run1	-	-	10	8	-	6	-	ı	-	-
CRIMontreal.v.Run2	7	-	-	-	-	-	9	ı	9	-
CRIMontreal.v.Run2Faster	8	-	-	-	-	-	8	-	-	-
ColumbiaU.v.baseLocal	-	-	-	-	-	-	-	-	-	9
thu-intel.v.1	-	-	-	10	-	-	-	-	-	-
MCG-ICT-CAS.v.ICTCBCDTOA	-	10	-	-	-	-	-	-	-	-

^{*}Numbers in table represent the rank

T1: Cam Cording

T3: Insertion of patterns

T5: Change of gamma

T8, T9: Post Production

T2: Pict. In Pict.

T4: Re-encoding

T6, T7: Decrease in quality

T1: Cam Cording

T3: Insertion of patterns

T5: Change of gamma

T8, T9: Post Production

T2: Pict. In Pict.

T4: Re-encoding

T6, T7: Decrease in quality

T1: Cam Cording

T3: Insertion of patterns

T(T7: Decrees in such

T5: Change of gamma

T8, T9: Post Production

T2: Pict. In Pict. T4: Re-encoding

T6, T7: Decrease in quality

Video-only performance (F1 vs Min. NDCR)

hard

T1: Cam Cording T3: Insertion of patterns T5: Change of gamma T8, T9: Post Production

T2: Pict. In Pict. T4: Re-encoding T6, T7: Decrease in quality T10: Random combination of 5 transformations

Video-only perf. (Proc. time vs F1)

T1: Cam Cording T3: Insertion of patterns

T5: Change of gamma

T8, T9: Post Production

T2: Pict. In Pict. T4: Re-encoding

T6, T7: Decrease in quality

Video-only perf. (Proc. time vs Min. NDCR)

T1: Cam Cording T3: Insertion of patterns T5: Change of gamma T8, T9: Post Production

T2: Pict. In Pict. T4: Re-encoding T6, T7: Decrease in quality T10: Random combination of 5 transformations

Audio-only performance (1 run)

	Min NDCR	F1	Proc. Time
T1: nothing	0.019	0.957	213.83
T2: mp3 compression	0.019	0.961	211.88
T3: mp3 compression and multiband companding	0.019	0.963	200.78
T4: bandwidth limit and single-band companding	0.019	0.962	200.93
T5: mix with speech	0.049	0.688	249.60
T6: mix with speech, then multiband compress	0.049	0.681	232.86
T7: bandpass filter, mix with speech, compress	0.064	0.605	236.58

One run submitted, its NDCR and F1 do rank among the best video only systems. Transformations 5,6 and 7 (variable mixing with unrelated audio content) seems to be harder.

Audio+video runs

- best video-only score for each V transformation
- best video+audio score for each A+V transformation

- A+V run set too limited for broad conclusions, but ...
- Relative effect of audio transformations seems similar across video transformations
- Using audio seems to help over just video when no speech is mixed in, except for VT5 (gamma)

Query length impact

 Pmiss at min NDCR for 5 length intervals (Median, Avg and Min over all participants)

Slide contributed by Alexis Joly/IMEDIA

Observations/questions

- All the pieces of the pilot came together as planned!
- Would not have been possible without major help from INRIA-IMEDIA, Laurent Joyeaux, Dan Ellis.
- Some systems have achieved very good results, the task has been difficult for many others.
- Score normalization across queries is critical
- Complex transformations are indeed more difficult.
 Query length has no major impact.
- Combination of a+v yields improvement
- How does the pilot task relate to a real operational CBCD task?

IMEDIA: Availability of tools and test corpus

- 2 tools developed by INRIA IMEDIA team
 - QueryComposer (random composition of reference and non reference video materials)
 - QueryTransformer (about 20 transformations randomly parameterized and composable)
- Dissemination
 - Tools
 - QueryComposer binaries already available to TRECVID
 - QueryTransformer binaries available before end of 2008
 - □ Open sources available to everybody in 2009
 - Corpus
 - □ A copyright free corpus will be generated and made available to everybody in 2009 (probably based on MUSCLE/CIVR 2007 reference dataset)